Testing your own intuitions on inferences Assignment 1/6, Introduction to Semantics, UniGe Fall 2011

A. ter Meulen, University of Geneva, Linguistics

- in a valid inference: whenever the premise is true, the conclusion is necessarily true (so the question is not 'can it be true?', but 'must it be true?')
- if you can imagine a model where the premise is true, but the conclusion false, the inference is not valid => proceed by falsification attempts
- when drawing Venn diagrams: if the inference is not valid, represent the model such that it constitutes a counterexample to the inference (premise true, conclusion false)
- if the inference is valid, the model must make it obvious that the conclusion cannot be false (usually on account of some subset-to-set relation)

1) A: No student works hard B : No smart student works hard white background for students gray background for smart students dotted line for hard workers Y ' for very hard workers2) A: A student works hard B : A smart student works hard 3) A: Three smart students work hard B : Three students work hard
(here you must imagine the students
evenly distributed in the diagrams)

13) A: Neither student works very hard B: Neither student works hard	invalid	
14) A: Only one student works very hard B: Only one student works hard (imagine no more students in the model than there are stars)		
15) A: Students work hard B: Students work very hard		valid

